

SPARK

pour la bioinformatique

Ludovic.Legrand@toulouse.inra.fr

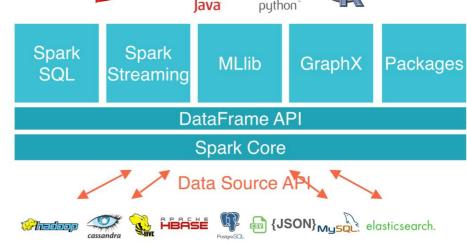
Framework de calcul distribué

- né à Berkeley en 2009
- Top-level project Apache depuis 2013

Intégré à l'ecosystème Hadoop

YARN/Mesos, HDFS, Hbase/Cassandra/Elastic ...

Remplace Hadoop petit à petit


Scala

- Jusqu'à 100x rapide (RAM)
- API simple et ouverte
- Traitement interactif

Evaluer Spark dans le cadre de la bioinformatique

- Evaluation d'outils déjà existants
- Développer des outils pour accélérer nos traitements
- Evaluer le paradigme MapReduce

Adéquation avec la bioinformatique

- Traitement de type pipeline
 - Ecriture/lecture sur disque important
 - Enchainement de traitement
- Manipulation de fichiers texte multiligne structurés

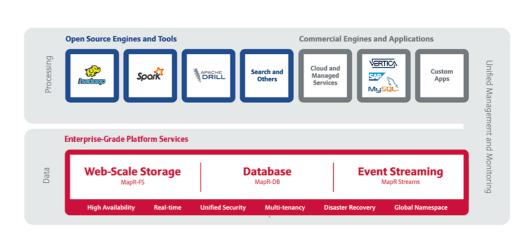
Infrastructure

Ressources cluster « utiles »

- 176 hyperthreads
- 650 Go RAM « overhead 350 Go »
- 6 To

Configuration

- Réplication 3x
- 20*1 To pour les données
- 4 * 1 To pour le système
- Carte RAID mode HBA



Distributions Hadoop

3 concurrents: MapR, Cloudera, Hortonworks

MapR (Open source edition)

- Intégration de l'ecosystème Hadoop
- Performant et user friendly
- MapR-FS
 - Système de fichiers compatible Hadoop
 - API HDFS, métadonnées distribuées
 - Compression des données
 - Système de fichiers POSIX
 - Export NFS
 - création/édition/délétion

Installation MapR

Installation

- Simple et automatique si sous Ubuntu/Centos/Redhat
- Dépôt logiciel (apt/yum)
- Interface web

Les problèmes rencontrés

- « Bidouiller » le script d'installation sous Debian
- Attention aux « locales » (en_US.UTF-8)
- Documentation dense mais manque d'exemples pratiques
- Difficulté à installer un client sur le frontal

Nos attentes

Accélérer l'analyse des données

- Suivre le débit de la production des données
- Mieux exploiter les données déjà produites

Infrastructure à faible coût et généraliste

- « Commodity hardware »
- Faible coût d'administration
- Mixer « Big Data » et cluster classique

Perspectives

Court terme

- Benchmark et prise en main des outils existants
 - Recherche de variants génomiques
 - Comptage de mots
- Prise en main de l'API Scala et développement d'outils ad hoc
 - Accélérer l'assignation taxonomique
- Evaluer les outils d'exploration
 - Spark SQL et Drill pour le SQL
 - GraphX pour les graphes

Moyen terme

- Evaluer des outils de Machine Learning (SparkML)
- Evaluer Mesos

Partenaires et financement

INRA pour le financement du matériel

Les CATIs

- BBRIC
- MIAGO
- CGI
- BIOS4BIOL

