

Alex Auvolat, Deuxfleurs Association

https://garagehq.deuxfleurs.fr/
Matrix channel: #garage:deuxfleurs.fr

Who I am

Alex Auvolat PhD; co-founder of Deuxfleurs

Deuxfleurs

A non-profit self-hosting collective, member of the CHATONS network

Our objective at Deuxfleurs

Promote self-hosting and small-scale hosting as an alternative to large cloud providers

Our objective at Deuxfleurs

Promote self-hosting and small-scale hosting as an alternative to large cloud providers

Why is it hard?

Resilience

we want good uptime/availability with low supervision

Commodity hardware (e.g. old desktop PCs)

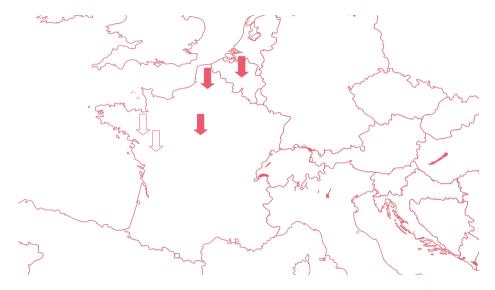
Commodity hardware (e.g. old desktop PCs)

(can die at any time)

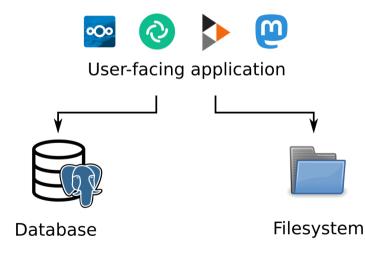
Commodity hardware (e.g. old desktop PCs)
 (can die at any time)

▶ Regular Internet (e.g. FTTB, FTTH) and power grid connections

Commodity hardware (e.g. old desktop PCs)
 (can die at any time)

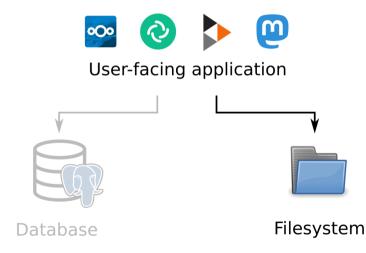

► Regular Internet (e.g. FTTB, FTTH) and power grid connections

(can be unavailable randomly)

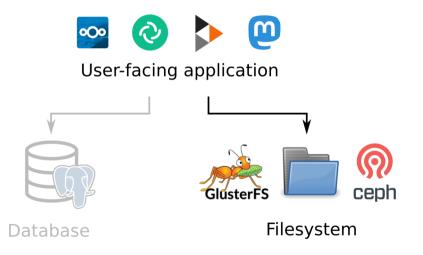

Commodity hardware (e.g. old desktop PCs)
 (can die at any time)

 Regular Internet (e.g. FTTB, FTTH) and power grid connections (can be unavailable randomly)

Geographical redundancy (multi-site replication)



How to make this happen


5/28

How to make this happen

5/28

How to make this happen

Distributed file systems are slow

File systems are complex, for example:

- Concurrent modification by several processes
- Folder hierarchies
- ▶ Other requirements of the POSIX spec (e.g. locks)

Coordination in a distributed system is costly

Costs explode with commodity hardware / Internet connections (we experienced this!)

Only two operations:

- ▶ Put an object at a key
- Retrieve an object from its key

(and a few others)

Sufficient for many applications!

S3: a de-facto standard, many compatible applications

S3: a de-facto standard, many compatible applications

MinIO is self-hostable but not suited for geo-distributed deployments

S3: a de-facto standard, many compatible applications

MinIO is self-hostable but not suited for geo-distributed deployments

Garage is a self-hosted drop-in replacement for the Amazon S3 object store

8/28

Principle 1: based on CRDTs

Internally, Garage uses only CRDTs (conflict-free replicated data types)

Why not Raft, Paxos, ...? Issues of consensus algorithms:

Internally, Garage uses only CRDTs (conflict-free replicated data types)

Why not Raft, Paxos, ...? Issues of consensus algorithms:

Software complexity

Internally, Garage uses only CRDTs (conflict-free replicated data types)

Why not Raft, Paxos, ...? Issues of consensus algorithms:

Software complexity

Performance issues:

Internally, Garage uses only CRDTs (conflict-free replicated data types)

Why not Raft, Paxos, ...? Issues of consensus algorithms:

Software complexity

Performance issues:

The leader is a **bottleneck** for all requests

Internally, Garage uses only CRDTs (conflict-free replicated data types)

Why not Raft, Paxos, ...? Issues of consensus algorithms:

Software complexity

Performance issues:

- ► The leader is a **bottleneck** for all requests
- Sensitive to higher latency between nodes

Internally, Garage uses only CRDTs (conflict-free replicated data types)

Why not Raft, Paxos, ...? Issues of consensus algorithms:

Software complexity

Performance issues:

- The leader is a **bottleneck** for all requests
- Sensitive to higher latency between nodes
- **Takes time to reconverge** when disrupted (e.g. node going down)

The data model of object storage

Object storage is basically a key-value store:

Key: file path + name	Value: file data + metadata		
index.html	Content-Type: text/html; charset=utf-8		
	Content-Length: 24929		
	 binary blob>		
img/logo.svg	Content-Type: text/svg+xml		
	Content-Length: 13429		
	 binary blob>		
download/index.html	Content-Type: text/html; charset=utf-8		
	Content-Length: 26563		
	 blob>		

The data model of object storage

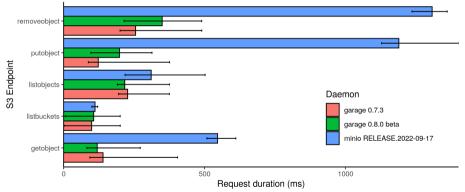
Object storage is basically a key-value store:

Key: file path + name	Value: file data + metadata		
index.html	Content-Type: text/html; charset=utf-8		
	Content-Length: 24929		
	 binary blob>		
img/logo.svg	Content-Type: text/svg+xml		
	Content-Length: 13429		
	 binary blob>		
download/index.html	Content-Type: text/html; charset=utf-8		
	Content-Length: 26563		
	 dinary blob>		

▶ Maps well to CRDT data types

The data model of object storage

Object storage is basically a key-value store:


Key: file path + name	Value: file data + metadata		
index.html	Content-Type: text/html; charset=utf-8		
	Content-Length: 24929		
	 binary blob>		
img/logo.svg	Content-Type: text/svg+xml		
	Content-Length: 13429		
	 binary blob>		
download/index.html	Content-Type: text/html; charset=utf-8		
	Content-Length: 26563		
	 binary blob>		

- Maps well to CRDT data types
- Read-after-write consistency with quorums

Performance gains in practice

S3 endpoint latency in a simulated geo-distributed cluster

100 measurements, 5 nodes, 50ms RTT + 10ms jitter between nodes no contention: latency is due to intra-cluster communications colored bar = mean latency, error bar = min and max latency

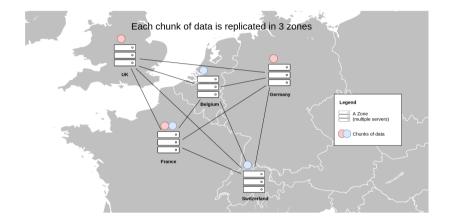
Get the code to reproduce this graph at https://git.deuxfleurs.fr/Deuxfleurs/mknet

Principle 2: geo-distributed data model

Key-value stores, upgraded: the Dynamo model

Two keys:

- > Partition key: used to divide data into partitions (a.k.a. shards)
- ▶ Sort key: used to identify items inside a partition


Partition key: bucket	Sort key: filename	Value	
website	index.html	(file data)	
website	img/logo.svg	(file data)	
website	download/index.html	(file data)	
backup	borg/index.2822	(file data)	
backup	borg/data/2/2329	(file data)	
backup	borg/data/2/2680	(file data)	
private	qq3a2nbe1qjq0ebbvo6ocsp6co	(file data)	

Layout computation

<pre>[root@celeri:/home/lx]# docker exec -ti e338 /garage status</pre>						
	==== HEALTHY NODES ====					
ID	Hostname	Address	Tags	Zone	Capacity	
5fcb3b6e39db3dcb	concombre	[2001:470:ca43::31]:3901	[concombre,neptune,france,alex]	neptune	500.0 GB	
942dd71ea95f4904	df-ymf	[2a02:a03f:6510:5102:6e4b:90ff:fe3a:6174]:3901	[df-ymf,bespin,belgium,max]	bespin	500.0 GB	
fdfaf7832d8359e0	df-ymk	[2a02:a03f:6510:5102:6e4b:90ff:fe3b:e939]:3901	[df-ymk,bespin,belgium,max]	bespin	500.0 GB	
0a03ab7c082ad929	ananas	[2a01:e0a:e4:2dd0::42]:3901	[ananas,scorpio,france,adrien]	scorpio	2.0 TB	
a717e5b618267806	courgette	[2001:470:ca43::32]:3901	<pre>[courgette,neptune,france,alex]</pre>	neptune	500.0 GB	
2032d0a37f249c4a	abricot	[2a01:e0a:e4:2dd0::41]:3901	[abricot,scopio,france,adrien]	scorpio	2.0 TB	
8cf284e7df17d0fd	celeri	[2001:470:ca43::33]:3901	[celeri,neptune,france,alex]	neptune	2.0 TB	
17ee03c6b81d9235	df-ykl	[2a02:a03f:6510:5102:6e4b:90ff:fe3b:e86c]:3901	[df-ykl,bespin,belgium,max]	bespin	500.0 GB	

Garage stores replicas on different zones when possible

Layout computation

Garage stores replicas on different zones when possible

What a "layout" is

A layout is a precomputed index table:

Partition	Node 1	Node 2	Node 3
Partition 0	df-ymk (bespin)	Abricot (scorpio)	Courgette (neptune)
Partition 1	Ananas (scorpio)	Courgette (neptune)	df-ykl (bespin)
Partition 2	df-ymf (bespin)	Celeri (neptune)	Abricot (scorpio)
:	:	:	:
Partition 255	Concombre (neptune)	df-ykl (bespin)	Abricot (scorpio)

What a "layout" is

A layout is a precomputed index table:

Partition	Node 1	Node 2	Node 3
Partition 0	df-ymk (bespin)	Abricot (scorpio)	Courgette (neptune)
Partition 1	Ananas (scorpio)	Courgette (neptune)	df-ykl (bespin)
Partition 2	df-ymf (bespin)	Celeri (neptune)	Abricot (scorpio)
:	:	:	:
Partition 255	Concombre (neptune)	df-ykl (bespin)	Abricot (scorpio)

The index table is built centrally using an optimal algorithm, then propagated to all nodes

What a "layout" is

A layout is a precomputed index table:

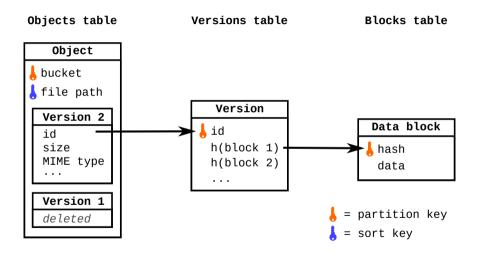
Partition	Node 1	Node 2	Node 3		
Partition 0	df-ymk (bespin)	Abricot (scorpio)	Courgette (neptune)		
Partition 1	Ananas (scorpio)	Courgette (neptune)	df-ykl (bespin)		
Partition 2	df-ymf (bespin)	Celeri (neptune)	Abricot (scorpio)		
:	:	:	:		
Partition 255	Concombre (neptune)	df-ykl (bespin)	Abricot (scorpio)		

The index table is built centrally using an optimal algorithm, then propagated to all nodes

Oulamara, M., & Auvolat, A. (2023). An algorithm for geo-distributed and redundant storage in Garage. arXiv preprint arXiv:2302.13798.

Alex Auvolat, Deuxfleurs

The relationship between *partition* and *partition key*


Partition key	Partition	Sort key	Value
website	Partition 12	index.html	(file data)
website	Partition 12	img/logo.svg	(file data)
website	Partition 12	download/index.html	(file data)
backup	Partition 42	borg/index.2822	(file data)
backup	Partition 42	borg/data/2/2329	(file data)
backup	Partition 42	borg/data/2/2680	(file data)
private	Partition 42	qq3a2nbe1qjq0ebbvo6ocsp6co	(file data)

To read or write an item: hash partition key

 \rightarrow determine partition number (first 8 bits)

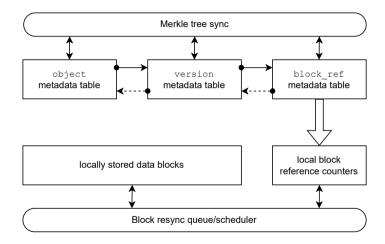
 \rightarrow find associated nodes

Garage's internal data structures

Operating Garage clusters

Operating Garage

\$ garage status						
==== HEALTHY NODE	S ====					
ID	Hostname	Address	Tags	Zone	Capacity	DataAvail
ec5753c546756825	df-pw5	[2a02:a03f:6510:5102:223:24ff:feb0:e8a7]:3991	[df-pw5]	bespin	500.0 GB	429.1 GB (89.0%)
76797283f6c7e162	carcajou	[2001:470:ca43::22]:3991	[carcajou]	neptune	200.0 GB	166.3 GB (73.5%)
8073f25ffb7d6944	piranha	[2a01:cb05:911e:ec00:223:24ff:feb0:ea82]:3991	[piranha]	corrin	500.0 GB	457.3 GB (94.0%)
3aed398eec82972b	origan	[2a01:e0a:5e4:1d0:223:24ff:feaf:fdec]:3991	[origan]	jupiter	500.0 GB	457.1 GB (93.1%)
967786691f20bb79	caribou	[2001:470:ca43::23]:3991	[caribou]	neptune	500.0 GB	453.1 GB (92.3%)


Operating Garage

\$ garage status	c					
==== HEALTHY NODE ID	S ==== Hostname	Address	T	7	C	
			Tags	Zone		DataAvail
ec5753c546756825	df-pw5	[2a02:a03f:6510:5102:223:24ff:feb0:e8a7]:3991	[df-pw5]	bespin	500.0 GB	429.1 GB (89.0%)
76797283f6c7e162	carcajou	[2001:470:ca43::22]:3991	[carcajou]	neptune	200.0 GB	166.3 GB (73.5%)
8073f25ffb7d6944	piranha	[2a01:cb05:911e:ec00:223:24ff:feb0:ea82]:3991	[piranha]	corrin	500.0 GB	457.3 GB (94.0%)
3aed398eec82972b	origan	[2a01:e0a:5e4:1d0:223:24ff:feaf:fdec]:3991	[origan]	jupiter	500.0 GB	457.1 GB (93.1%)
967786691f20bb79	caribou	[2001:470:ca43::23]:3991	[caribou]	neptune	500.0 GB	453.1 GB (92.3%)

<pre>\$ garage status ==== HEALTHY NODES</pre>						
ID	Hostname	Address	Tags	Zone	Capacity	DataAvail
76797283f6c7e162	carcajou	[2001:470:ca43::22]:3991	[carcajou]	neptune	200.0 GB	166.3 GB (73.5%)
8073f25ffb7d6944	piranĥa	[2a01:cb05:911e:ec00:223:24ff:feb0:ea82]:3991	[piranha]	corrin	500.0 GB	457.3 GB (94.0%)
3aed398eec82972b	origan	[2a01:e0a:5e4:1d0:223:24ff:feaf:fdec]:3991	[origan]	jupiter	500.0 GB	457.1 GB (93.1%)
967786691f20bb79	caribou	[2001:470:ca43::23]:3991	[caribou]	neptune	500.0 GB	453.1 GB (92.3%)
==== FAILED NODES						
ID	Hostname	Address	Tags	Zone Ca	apacity La	st seen
ec5753c546756825	df-pw5	[2a02:a03f:6510:5102:223:24ff:feb0:e8a7]:3991	[df-pw5]	bespin 50	90.0 GB 5	minutes ago

20 / 28

Background synchronization

Digging deeper

			ts

Garage version: 20240116133343 [features: k2v, sled, lmdb, sqlite, consul-discovery, kubernetes-discovery, metrics, telemetry-otlp, bundled-libs] Rust compiler version: 1.68.0

Database engine: LMDB (using Heed crate)

 Table
 Ttems
 MklItems
 MklTodo
 GcTodo

 bucket_v2
 19
 20
 0
 0

 key
 12
 14
 0
 0

 object
 G7391
 80964
 0
 0

 version
 33090
 42045
 0
 0

Block manager stats: number of RC entries (~= number of blocks): 42376 resync queue length: 0 blocks with resync errors: 0

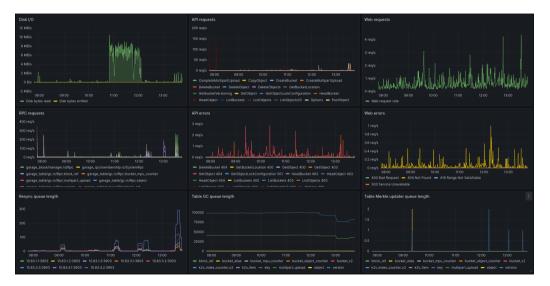
If values are missing above (marked as NC), consider adding the --detailed flag (this will be slow).

Storage nodes:

Capacity Part. DataAvail Hostname Zone MetaAvail ec5753c546756825 df-pw5 429.1 GB/482.1 GB (89.0%) 429.1 GB/482.1 GB (89.0%) 500 0 GB 175 76797283f6c7e162 carcajou neptune 200.0 GB 70 166.3 GB/226.2 GB (73.5%) 166.3 GB/226.2 GB (73.5%) 8073f25ffb7d6944 piranha 500.0 GB 173 457.3 GB/486.4 GB (94.0%) 457.3 GB/486.4 GB (94.0%) jupiter 500.0 GB 175 3aed398eec82972b origan 457.1 GB/490.7 GB (93.1%) 457.1 GB/490.7 GB (93.1%) 967786691f20bb79 caribou neptune 500.0 GB 175 453.1 GB/490.8 GB (92.3%) 453.1 GB/490.8 GB (92.3%) Estimated available storage space cluster-wide (might be lower in practice): data: 608.3 GB metadata: 608.3 GB

22 / 28

Digging deeper


s ga	irage wo	rker list				
TIĎ		Name	Done	Queue		
1	Idle	Block resync worker #1				
2		Block resync worker #2				
3		Block resync worker #3				
4		Block resync worker #4				
5		Block resync worker #5				
6		Block resync worker #6				
7		Block resync worker #7				
8		Block resync worker #8				
9		Block scrub worker				
10		bucket v2 Merkle				
11		bucket v2 sync				17 hours ago
12		bucket v2 GC				
13		bucket v2 queue				
14		bucket alias Merkle				
15		bucket alias sync				17 hours ago
16		bucket alias GC				
17		bucket alias queue				
18		key Merkle				
19		key sync				17 hours ago
20		key GC				
21		key queue				
22						
23	Idle	object sync				17 hours ago
24	Idle					
25		object queue				
26		bucket object counter Merkle				
27		bucket object counter sync				17 hours ago
28		bucket object counter GC				
29		bucket object counter queue				
30		multipart upload Merkle				
31		multipart upload sync				17 hours ago
32		multipart upload GC				
33		multipart upload queue				
34		bucket mpu counter Merkle				
35		bucket mpu counter sync				
36		bucket mpu counter GC				
37		bucket mpu counter queue				
38		version Merkle				
39		version sync				17 hours ago
40		version GC				
41		version queue				
42		block ref Merkle				
43		block ref sync				17 hours ago
44		block ref GC				
45		block ref queue				
46		object lifecycle worker				

Digging deeper

-completed	2024-01-23
lity	
count	4
ons_detected	
oleted	2023-12-27T13:49:33.234Z
	2024-01-31T03:23:02.234Z
ity	4
anquility	
lity 1	
	lity count ons_detected oleted ity anquility lity 1 lity 1 lity 1 lity 1 lity 1

22 / 28

Monitoring with Prometheus + Grafana

Debugging with traces

JAEGER UI Search Compare S	system Architecture Monitor			Q Lo	okup by Trac	e ID	About Jaeger ~
← ✓ garage: S3 API ListOb	bjects 1f6c3ec		Find		۰ ،	 ✓ × ¥ 	Trace Timeline v
Trace Start January 22 2024, 17:11:13.164 Dura	ation 119.75ms Services 1 Depth 6	Total Spans 18					
0µs	29.94ms	59.1	88ms		89.81ms		119.75ms
Service & Operation \lor > \lor >	0µs	29.94ms	5	59.88ms		89.81ms	119.75m
garage S3 API ListObjects						-	
✓ garage key get	102µs						
✓ garage RPC garage_table/table.rs/Rpc:ke	1 69µs						
garage RPC to 76797283/6c7e162	1 39µs						
V garage bucket_alias get	l 51µs						
✓ garage RPC garage_table/table.rs/Rpc:bu	1 40µs						
garage RPC to 76797283/6c7e162	1 20µs						
✓ garage bucket_v2 get	1 59µs						
✓ garage RPC garage_table/table.rs/Rpc:bu	1 34µs						
garage RPC to 76797283f6c7e162	l 17µs						
✓ garage object get_range							
Sarage RPC garage_table/table.rs/Rpc:obj							114.2
✓ garage RPC to 967786691f20bb79	6.85ms						
garage RPC >> garage_table/ta	2.57ms						
garage >> RPC garage_tabl	. 🔲 1.93ms						
✓ garage RPC to 3aed398eec82972b							114.2
garage RPC >> garage_table/ta			42.92ms				
garage >> RPC garage_tabl		🔲 1.89m	15				

Alex Auvolat, Deuxfleurs

Scaling Garage clusters

Potential limitations and bottlenecks

► Global:

▶ Max. ~100 nodes per cluster (excluding gateways)

Metadata:

One big bucket = bottleneck, object list on 3 nodes only

► Block manager:

- Lots of small files on disk
- Processing the resync queue can be slow

Deployment advice for very large clusters

- Metadata storage:
 - ZFS mirror (x2) on fast NVMe
 - Use LMDB storage engine
- Data block storage:
 - Use Garage's native multi-HDD support
 - XFS on individual drives
 - Increase block size (1MB \rightarrow 10MB, requires more RAM and good networking)
 - Tune resync-tranquility and resync-worker-count dynamically

Other :

- Split data over several buckets
- Use less than 100 storage nodes
- Use gateway nodes

Our deployments: < 10 TB. Some people have done more!

Where to find us

https://garagehq.deuxfleurs.fr/
mailto:garagehq@deuxfleurs.fr
#garage:deuxfleurs.fr on Matrix

